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Microscale gas flows between two rotating coaxial circular cylinders of infinite length with different tem-
peratures are investigated. Navier-Stokes-Fourier �NSF� and regularized 13-moment �R13� equations in their
linear form are used to independently analyze velocity and temperature fields in shear-driven rotary flows, i.e.,
cylindrical Couette flows. Knudsen boundary layers, which present non-Newtonian stress and non-Fourier heat
flow, are predicted as the dominant rarefaction effects in the linear theory. We show that the R13 system yields
more accurate results for this boundary value problem by predicting the Knudsen boundary layers, which are
not accessible for NSF equations. Furthermore, a set of second-order boundary conditions for velocity slip and
temperature jump are derived for the NSF system. It is shown that the proposed boundary conditions effec-
tively improve the classical hydrodynamics. The accuracy of NSF and R13 equations is discussed based on
their comparison with available direct simulation Monte Carlo data.
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I. INTRODUCTION

Unlike liquid flows, a distinguishing feature of a gas flow-
ing adjacent to a solid surface is the formation of Knudsen
boundary layers �1–4�. It is well known that velocity and
temperature differences between the gas and the bounding
surface, and also temperature gradients along the surface can
establish nonequilibrium Knudsen layers �5–8�, which ex-
tend to a distance of about two mean free paths.

In gaseous flows, the degree of gas rarefaction is mea-
sured with Knudsen number Kn, the ratio of molecular mean
free path to a geometric characteristic length, for example,
channel width or tube radius. As the flow dimensions de-
crease, the Knudsen number increases and nonequilibrium
effects dominate the flow, e.g., the thickness of Knudsen
layer increases. As a consequence of the molecules’ colli-
sions with the boundary, the statistical molecular distribution
close to the boundary deviates from the bulk distribution,
where intermolecular collisions are dominant. Kinetic theory
proves that this non-homogeneous statistical distribution of
molecules leads to Knudsen layers �1–4�, in which nonequi-
librium effects such as velocity slip, temperature jump, non-
Newtonian stress, and non-Fourier heat flow occur.

Circular flow between two concentric cylinders which are
at different temperatures and rotate relative to each other,
i.e., nonisothermal cylindrical Couette flow, is a basic prob-
lem of shear-driven flows in nonplanar coordinates. The
simple configuration of cylindrical Couette flow allows to
study the structure of Knudsen boundary layers over curved
boundaries. Microscale cylindrical Couette flows are com-
mon in miniaturized turbomachinery designs, e.g., microtur-
bines, where work transfer between a rotor and a fluid is
desired �9�. Moreover, they have many applications in mi-
crotribology, i.e., the science of interacting surfaces in rela-
tive motion �10�. It is worth mentioning that the fast-paced
growth of interest in miniaturized devices demands an accu-

rate understanding of the underlying physical processes in
microscale gaseous flows, where the rarefaction effects alter
the classical flow patterns.

It is well established that nonequilibrium flows cannot
properly be described by traditional hydrodynamics, namely,
the Navier-Stokes-Fourier �NSF� equations �4�. Accordingly,
rarefied shear-driven circular flows have been investigated
experimentally �11,12� and numerically �13–23�. The nu-
merical solutions are obtained from the Boltzmann kinetic
equation using the Bhatnagar-Gross-Krook �BGK� model
�24� or direct simulation Monte Carlo �DSMC� method �25�.
Different aspects of these flows are studied through the ki-
netic approaches. These include prediction of drag coeffi-
cients on the cylinders �11,13�, density minimum phenom-
enon �14�, evaporation and condensation on the cylinders
�17,20�, non-Newtonian stress components �19�, non-Fourier
heat flow �19�, flow stability �15,23�, effects of boundary
curvature, and the velocity inversion phenomenon
�18,21,22�. The velocity inversion is a nonintuitive phenom-
enon which happens in cylindrical Couette flows with
smooth walls. When the inner cylinder is rotating and the
outer one is stationary, the velocity of the gas increases with
the distance from the inner cylinder.

In Refs. �26–28� and also in the present study, it is shown
that the classical NSF equations can describe some of the
characteristic features of cylindrical Couette flows, e.g., ve-
locity inversion. Moreover, they can describe the effects of
velocity slip and temperature jump when higher-order
boundary conditions are employed. Nevertheless, NSF equa-
tions fail to present the high-order rarefaction effects, i.e.,
Knudsen boundary layers.

Beside kinetic approaches, the higher-order rarefaction ef-
fects which are beyond the resolution of NSF system can be
predicted by extended macroscopic transport equations �4�.
Traditionally, extended macroscopic transport equations are
derived from the Boltzmann kinetic equation by either the
Chapman-Enskog expansion method �29� or by Grad’s mo-
ment expansion �30,31�. Depending on the order of the ex-
pansions, these extended equations can be used to predict
nonequilibrium effects in dilute gas flows.
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In Ref. �32�, Burnett equations obtained from the
Chapman-Enskog expansion method are used to examine the
variations of viscosity and thermal conductivity in high-
speed cylindrical Couette flows. A sever disadvantage of the
Burnett-type equations is their linear instability �33,34�. Fur-
thermore, there is no systematic approach to specify high-
order derivatives of macroscopic properties on the boundary,
which serve as boundary conditions for Burnett-type equa-
tions. Additionally, Khayat and Eu �35,36� adapted their
Grad-type moment equations to investigate cylindrical Cou-
ette flow of Lennard-Jones fluids. However, they reduced the
governing equations such that NSF boundary conditions
were sufficient.

The R13 equations are a regularized version of the clas-
sical Grad’s 13-moment equations �30,31�. In contrast to the
Grad’s system, the R13 system is able to capture the Knud-
sen boundary layers, which are particularly interesting in
boundary-value problems of rarefied gas dynamics �37–43�.

In this paper, we introduce the R13 equations and their
corresponding kinetic boundary conditions as a higher-order
macroscopic transport model for shear-driven rotary flows in
microannuli. This model predicts a circumferential non-
Fourier heat flow and non-Newtonian stress components
which are pure rarefaction effects �41,42� to which little at-
tention is given in the literature. In addition, a set of second-
order boundary condition is presented, which effectively im-
proves the NSF predictions.

We focus on radial and azimuthal momentum and heat
transfer in cylindrical Couette flows, i.e., cylinders with in-
finite length where the effects of top and bottom surfaces are
neglected. The R13 equations are applicable for flows in the
transition regime where Kn�0.5. Both NSF and regularized
13-moment �R13� equations �4,44,45� in their linearized
form are employed to solve the problem. Indeed, microflows
are slow with small temperature gradients, which allow ap-
plication of linear equations. The advantage of linearization
is brevity of the equations, that makes the analytical solution
accessible �38,41–43�, on the other hand, some accuracy is
lost in the linear solutions. In Sec. IV it is shown that Knud-
sen boundary layers which are dominant rarefaction effects
in our considered problems can be estimated by the linear-
ized R13 equations.

We conclude this introductory section by giving a short
remark on stability of shear-driven rotary flows with limited
axial length, also called Taylor-Couette flows. For liquids,
stability of circular Couette flow with finite length is rigor-
ously investigated by Andereck et al. �46�. Their experiments
with water revealed that eighteen flow regimes can be distin-
guished in two-dimensional cylindrical Couette flows, where
the effects of top and bottom ends are prominent. They
showed that for fixed flow dimensions, transition between
the regimes depends on the Reynolds numbers corresponding
to inner and outer cylinders, and the rotation mode �counter-
rotating and corotating�. Experiments in �46� concern only
dynamic �and not thermal� behavior of cylindrical Couette
flows. To the authors’ knowledge there is a lack of similar
study for rarefied gas flows, owing to the difficulties of ex-
periments with gases. However, in Refs. �15,23� DSMC
simulations are reported for moderately rarefied cylindrical
Couette flows without axial uniformity, where top and bot-

tom boundaries were in effect. For a constant Knudsen num-
ber and a fixed flow geometry, they obtained three different
flow regimes, which only depend on the velocity of the cyl-
inders �23�.

II. PROBLEM STATEMENT

We consider a monatomic ideal-gas flow in rarefied con-
dition that is confined in an annulus between two coaxial
cylinders. The height of the cylinders H is sufficiently large
such that top and bottom boundary effects can be neglected.
For instance, the ratio of gap to height in the apparatus used
by Alfos and Springer �11� was 0.06, where the inner and
outer radii were 6.350 and 7.112 cm, respectively; the height
of the cylinders was 6.350 cm, and for minimizing end ef-
fects measurements were made on the center, H /2.

The flow setting is depicted in Fig. 1. The temperatures of
inner and outer cylinders are Tw,i and Tw,o, respectively,
where the superscript “w” refers to the properties at the cy-
lindrical walls. The angular velocities of the cylinders are �i
and �o around the z axis. We employ cylindrical coordinates
x= �r ,� ,z�, where r is the radial coordinate and ri and ro are
inner and outer radii of the circular gap, respectively. The
gap size is L=ro−ri. The circumferential velocities of the
wall surfaces are v�

w,i=ri�i, and v�
w,o=ro�o. We investigate

steady state behavior of the gas in the absence of body
forces.

Therefore, the flows considered are defined by setting the
dimensions �ri ,ro�, temperatures �Tw,i ,Tw,o�, and velocities
�v�

w,o ,v�
w,i� of the cylinders. Moreover, the gas rarefaction is

controlled through the mass of the gas in the system �or the
mass density at rest�.

The walls are impermeable and there is no velocity in
radial direction, vr=0. There is no axial velocity vz=0; flow
is independent of axial direction � /�z=0, and it is uniform
circumferentially, � /��=0, i.e., axisymmetric flow. Accord-
ingly, the velocity field reads

vi = � 0

v��r�
0

� . �1�

FIG. 1. Coordinates and flow setting in cylindrical Couette flow.
The gas is confined in the gap between the cylinders, which have
different temperatures and rotate independently.
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Since the flow is assumed to be independent of the z direc-
tion, the symmetric and trace-free stress tensor �ij, and the
heat-flux vector qi simplify to

�ij = ��rr�r� �r��r� 0

�r��r� ����r� 0

0 0 �zz�r�
�, qi = �qr�r�

q��r�
0

� , �2�

where all components are functions of the radial coordinate
r. Trace-free condition for the stress tensor gives
�zz�r�=−�rr�r�−����r�.

III. R13 SYSTEM FOR SHEAR-DRIVEN ROTARY FLOWS

The regularized 13-moment equations �44,45� and their
corresponding boundary conditions �40� are originally pre-
sented in rectangular space �Cartesian� coordinates
x= �x ,y ,z�. It was shown that these equations can success-
fully describe a wealth of rarefaction effects in planar rar-
efied gas flows �38–43�. Particularly, formation of Knudsen
boundary layers for all hydrodynamic quantities, a heat flow
opposite to flow direction not driven by temperature gradi-
ent, characteristic temperature dip and Knudsen paradox in
force-driven Poiseuille flow, and nonhomogeneous pressure
distribution in Couette and Poiseuille flows.

In this section, we present the R13 equations in cylindri-
cal space coordinates, where the transformed equations are
simplified based on Eqs. �1� and �2�. Transformation of the
R13 equations from the rectangular to cylindrical coordinate
follows from the standard vector and tensor analysis for gen-
eral curvilinear systems �47�.

A. Full R13 equations for shear-driven flows in the cylindrical
coordinate

The fully nonlinear R13 equations include the main con-
servation laws for mass, momentum, and energy densities,
which for the considered geometry read as

−
�v�

2

r
+

�p

�r
+

��rr

�r
+

�rr − ���

r
= 0, �3�

��r�

�r
+ 2

�r�

r
= 0, �4�

�qr

�r
+

qr

r
= − �r�	 �v�

�r
−

v�

r

 . �5�

Here, � is the mass density and � is the temperature in en-
ergy units ��=RT, where R is the gas constant and T is
thermodynamic temperature�. For monatomic ideal gases
p=�� holds as the equation of state, where p is the pressure.

Equations �3� and �4� are the momentum balance in the
radial and azimuthal directions, respectively. Equation �5� is
the energy balance, where the coupling between �r� and v�

on the right-hand side represents the viscous heating terms.
Due to the prescribed geometry, continuity and z-momentum
equations turn out to be trivial.

The extended balance equations for the heat-flux compo-
nents �qr ,q�� and the stress tensor components
��rr ,�r� ,���� follow from their respective moment equa-
tions �4,44,45� that in cylindrical space coordinates are
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The underlined terms on the right-hand side of Eqs. �6� and �9� represent Fourier and Navier-Stokes laws in classical
hydrodynamics, i.e., Fourier’s heat conduction and Newtonian viscous shear, where the viscosity of the gas is denoted by 	.
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The extended balance Eqs. �6�–�10� can be furthermore simplified by means of the main balance laws �Eqs. �3�–�5��, but to
keep generality we continue with the presented form.

The regularization procedure �4,44,45� gives the additional moments as

� = − 2
�rr
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In original Grad’s 13-moment system the higher-order mo-
ments given in Eqs. �11�–�18� are zero. We emphasize that
Eqs. �6�–�18� are derived for Maxwellian molecules �4�. The
nonlinear terms with gradients result from the drift term in
the Boltzmann equation, while the quadratic terms without
gradients result from the bilinear collision term for Maxwell
molecules �48�. In order to compare the solution of the above
equations to other kinetic solutions, proper scaling needs to
be applied between the underlying kinetic models. For ex-
ample, comparison with the BGK model requires different
factors in the above equations, see chapter 8 of the textbook
�4�.

It is straightforward to see that for small curvatures, i.e.,
when r→
, Eqs. �3�–�18� converge to the R13 equations for
Couette flow in slab geometry �42�.

Classical case: in classical hydrodynamics, the balance
equations for heat flux and stress �Eqs. �6�–�10�� are replaced
by

qr
NSF = − �

��

�r
, �r�

NSF = − 		 �v�

�r
−

v�

r

 ,

q�
NSF = �rr

NSF = ���
NSF = 0, �19�

which are the Fourier and Navier-Stokes laws with �
=15 	 /4 as the heat conductivity for ideal gases. In the limit

of small Knudsen numbers Eqs. �6�–�10� reduce to Eq. �19�,
i.e., only the underlined terms remain. The basic conserva-
tion laws in Eqs. �3�–�5� with closure �19� construct the clas-
sical hydrodynamic system.

B. R13 boundary conditions for shear-driven flows in the
cylindrical coordinate

We shall employ the kinetic boundary conditions for the
R13 system �40�, which were obtained based on Maxwell’s
boundary condition for the Boltzmann equation �49�. The
boundary conditions link the moments of the gas near the
wall to wall velocity v�

w and wall temperature �w=RTw. Ex-
tensive discussions on the approach are available in the lit-
erature �30,40,49–51�. The boundary conditions for the R13
system are �40�

�r� =
− �

2 − �
 2

�
�PV� +

1

5
q� +
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2
mrr��nr, �20�

Rr� =
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5
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with

P = p +
1

2
�rr −

1

120
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−

1

28

Rrr

�
,

V� = v� − v�
w, T = � − �w. �25�

Here, velocity slip and temperature jump at the boundary are
denoted by V� and T. The surface normal vectors on inner
and outer walls are nr

i =+1 and nr
o=−1, respectively. The sur-

face accommodation coefficient for macroscopic quantities is
presented by �. In theory, exact boundary conditions are
available if the details of the gas-surface interaction are
known. In the absence of such information, a simple argu-
ment going back to Maxwell �49� can be utilized to derive
macroscopic boundary conditions for the moments. In
Maxwell’s diffusive-reflective boundary condition �=0 and
�=1 present fully reflective �smooth� and fully diffusive
�rough� surfaces, respectively. These accommodation coeffi-
cients are generally considered as surface properties and in
engineering applications are very close to unity �11�.

Since mass is conserved in the process, the auxiliary con-
dition,

�
ri

ro

�r dr = const, �26�

can be used to find the radial density distribution.
Classical case: first- and second-order boundary condi-

tions for velocity slip and temperature jump can be derived
from the R13 boundary conditions �41�. These boundary
conditions provide corrections to the zeroth-order no-slip
condition, hence, their incorporation with the NSF equations
allows partial compensation for the missing rarefaction ef-
fects. Based on the scaling approach in Ref. �41� these sur-
face discontinuity conditions can be derived for cylindrical
geometry as

V�
NSF = −

2 − �

�
�

2

�r�
NSF

p
nr −

19

18

�r�
NSFqr

NSF

p2

+
1

3

	�

p2 	5

2

��r�
NSF

�r
−

�r�
NSF

r



−
	

p2	5

6
�r�

NSFv� −
3

5
qr

NSF
v�

r
, �27�

and
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35
qr

NSFv�
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r
, �28�

where qr
NSF and �r�

NSF are given in Eq. �19�. The underlined
terms correspond to the first-order slip and jump contribu-
tions, while the others are second-order corrections. The
derivation of the above boundary conditions is presented in
Appendix A.

C. Dimensionless and linearized R13 equations for shear-
driven flows in cylindrical coordinates

In our analysis we employ the linearized Navier-Stokes-
Fourier and R13 equations in dimensionless form. Nondi-
mensionalization and linearization are performed with re-
spect to a reference equilibrium state, defined by ��0 ,�0 ,vi

0

=0�. Linearized equations are applicable only for processes
in vicinity of the reference equilibrium state because only
linear deviations from the ground equilibrium state are in-
cluded within the equations. Hence, linearized equations can
be used for microflows, which in most cases are slow and are
subject to small temperature gradients.

The merit of linearization is simplicity of the equations
that sometimes makes the analytical solution accessible.
While the rarefaction effects are known from numerical so-
lutions of the Boltzmann equation, they appear in analytical
solutions of the R13 equations. The availability of analytical
solutions leads to an increased understanding of linear and
nonlinear rarefaction effects. The numerical solution for the
fully nonlinear system demands an appropriate numerical ap-
proach which is still in development.

The following linearized equations are presented in di-
mensionless form. Detailed information about dimensionless
parameters is available in Appendix B. In the following di-
mensionless equations Kn=�0 /� is the Knudsen number at
the reference state, where � stands for a macroscopic refer-
ence length and �0=	0

�0 / p0 is the molecular mean-free
path in the reference equilibrium state. For the prescribed
cylindrical geometry, the chosen reference length normally is
either the radius of the inner cylinder, ri �21�, the radius of
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the outer cylinder, ro �19�, or the gap width, ro−ri �18�.
Linearization leads to decoupling of velocity and tem-

perature fields, such that Eqs. �3�–�18� and their correspond-
ing boundary conditions �20�–�26� can be split into the fol-
lowing three sets:

�i� The velocity problem.
R13 case:
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2

3 Kn
q�, �30�

2

5
	 �q�

�r
−

q�

r

 +

�v�

�r
−

v�

r
−

m���

r
+

�mrr�

�r
+ 2

mrr�

r

= −
1

Kn
�r�, �31�

with the constitutive relations

Rr� = −
12 Kn

5
	 �q�

�r
−

q�

r

 ,

mrr� = − m��� = 4 Kn
�r�

r
, �32�

and the linearized boundary conditions

�r� = −
�

2 − �
 2


	V� +

1

5
q� +

1

2
mrr�
nr, �33�

Rr� =
�

2 − �
 2


	V� −

11

5
q� −

1

2
mrr�
nr. �34�

While Eq. �29� is the tangential momentum balance, Eqs.
�30� and �31� are linearized balance equations for tangential
components of heat-flux vector �Eq. �7�� and stress tensor
�Eq. �9��.

As a pure rarefaction effect, the tangential heat flow q� is
not driven by a temperature gradient, which makes this prob-
lem completely independent of temperature.

Classical case: the linearized velocity problem in the
Navier-Stokes-Fourier system includes the tangential mo-
mentum balance �Eq. �29��,

	 �

�r
+

2

r

	 �v�

�r
−

v�

r

 = 0, �35�

in which the linear Navier-Stokes law for stress was used,
�r�

NSF=−Kn��rv�−v� /r�.
The linearized second-order velocity slip condition for the

NSF system follows from Eq. �33�, which, after substitution
of Navier and Stokes law reads

V�
NSF =

2 − �

�


2
	 �v�

�r
−

v�

r

Kn nr

− 	5

6

�2v�

�r2 −
7

6

1

r

�v�

�r
+

7

6

v�

r2 
Kn2. �36�

�ii� The temperature problem.
R13 case:

�qr

�r
+

qr

r
= 0, �37�

4

15
	2

�qr

�r
−

qr

r

 +

�mrrr

�r
+

mrrr

r
− 2

mr��

r
= −

1

Kn
�rr,

�38�

4

15
	2

qr

r
−

�qr

�r

 +

�mr��

�r
+ 3

mr��

r
= −

1

Kn
���, �39�

5

2

��

�r
+

��rr

�r
+

�rr − ���

r
+

1

6

��

�r
+

1

2

�Rrr

�r
+

1

2

Rrr − R��

r

= −
2

3 Kn
qr, �40�

with the constitutive relations for its higher-order moments

� = 0, Rrr = − R�� =
24 Kn

5

qr

r
,

mrrr = −
6 Kn

5
	 ��rr

�r
−

2

3

�rr − ���

r

 ,

mr�� = −
2 Kn

3
	 ����

�r
−

2

5

��rr

�r
+

8

5

�rr − ���

r

 . �41�

The boundary conditions for the temperature problem are

qr = −
�

2 − �
 2


	2T +

1

2
�rr +

1

15
� +

5

28
Rrr
nr, �42�

mrrr =
�

2 − �
 2


	2

5
T −

7

5
�rr +

1

75
� −

1

14
Rrr
nr, �43�

mr�� = −
�

2 − �
 2


	1

5
T −

1

5
�rr + ��� +

1

150
� +

1

14
R��
nr.

�44�

Equation �37� is the linearized energy balance, where the
nonlinear viscous heating terms are discarded in the linear-
ization, compare with Eq. �5�. Linearized balance equations
for normal components of the stress tensor and heat-flux vec-
tor are given in Eqs. �38�–�40�.

Classical case: the linearized temperature problem in the
Navier-Stokes-Fourier system is the energy balance �Eq.
�37��,
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	 �

�r
+

1

r

 ��

�r
= 0, �45�

in which the linear Fourier law for heat conduction was used,
i.e., qr

NSF=−15 /4 Kn �r�.
The linearized second-order temperature jump condition

for NSF system follows from Eq. �42�, which after substitu-
tion of Fourier’s law reads

TNSF =
2 − �

�

15

8


2

��

�r
Kn nr − 	18

7

�2�

�r2 +
3

14

1

r

��

�r

Kn2.

�46�

�iii� The density/pressure problem.
R13 case: Equation �3� is the radial momentum balance,

which governs the radial density gradient. This equation in
linear form is

��

�r
+

��

�r
+

��rr

�r
+

�rr − ���

r
= 0, �47�

where p= p0�1+�+�� is used as the linearized ideal-gas law,
see Appendix B.

The auxiliary condition given in Eq. �26� serves to evalu-
ate the density distribution. This condition in proper dimen-
sionless form is

�
ri

ro

�� + 1�r dr = const. �48�

Classical case: in classical hydrodynamics where non-
Newtonian stress components are zero, the density-pressure
problem reduces to �r�=−�r�.

D. Remarks on characteristic parameters

The Knudsen number Kn=�0 /� in the dimensionless
equations is a measure for the degree of gas rarefaction. As
already mentioned, the problem allows for several choices
for �, namely, the gap size �18�, the radius of the inner cyl-
inder �21�, or the radius of the outer cylinder �19�. Accord-
ingly, the Knudsen number is not uniquely defined. For char-
acterizing the degree of rarefaction one will be inclined to
base the definition of Kn on the smallest of these scales, i.e.,
either ri or ro−ri. For presenting results in dimensionless
form, any choice of the reference length might be used.
However, one has to be careful about the various definitions
used in the literature when results of different sources are
compared. When comparing to the results of other authors,
we shall follow their choice of definition, otherwise we base
the definition of Kn on the radius of the inner cylinder.

Apart from the Knudsen number, the processes depend on
the �angular� velocities of the cylinders and their tempera-
tures. The differences in angular velocities ��o−�i� and in
temperatures �Tw,o−Tw,i� are the driving forces for the pro-
cesses. Dimensionless measures, e.g., the Mach number, are
useful to indicate the strength of these driving forces. As
explained in Appendix B, for the velocity scale we use the
isothermal speed of sound, �0, which is proportional to the
equilibrium speed of sound, c=��0 ��=5 /3 is the ratio of

specific heats�. Thus, the dimensionless velocity is related to
the Mach number by �ṽ�=Ma�.

IV. SOLUTIONS

A. Analytical solution for the linearized velocity problem

Replacement of Eqs. �32� into Eqs. �30� and �31� leads to
a compact form of the velocity problem,

��r�

�r
+ 2

�r�

r
= 0, �49�

�

�r
	 �q�

�r
+

q�

r

 =

5

9 Kn2q�, �50�

�

�r
	2

5

q�

r
+

v�

r

 = −

1

Kn

�r�

r
. �51�

It is a straightforward task to find the general solution for Eq.
�49�. Equation �50� is a modified Bessel equation and its
general solution consists of two linearly independent solu-
tions, the Bessel functions I� and K� �with �=1 in this case�.
The solution for v� follows by integrating Eq. �51� and sub-
stituting the obtained solutions for �r� and q�. Accordingly,
the general solutions for the velocity problem are

�r� =
C1

r2 , �52�

q� = C2I1	 5

3 Kn
r
 + C3K1	 5

3 Kn
r
 , �53�

v� = −
2

5
q�+

1

2 Kn
�r�r + C4r , �54�

where C1 to C4 are constants that must be determined from
the boundary conditions.

The underlined terms denote the linearized NSF solution,
which require the boundary condition �36�.

As indicated in Eq. �52�, the linear solutions for the shear
stress are the same for both NSF and R13 systems. The
Bessel functions I1 and K1 represent the Knudsen layers
which are pure rarefaction effects. The circumferential heat
flow q� contributes to the velocity solution. In the linear
case, the only difference between NSF and R13 arises
through the Knudsen boundary layer q�, where q�

NSF=0. Slip
velocity on the boundaries is given by the coefficient C4 and
the Knudsen layer contribution.

B. Numerical solution for the linearized temperature problem

Due to the coupling between �rr and ��� in Eqs.
�38�–�40�, an analytical solution for the temperature problem
is not accessible. Thus, the linear temperature problem is
solved numerically as in Ref. �40�.

The linearized temperature problem given by Eqs.
�37�–�40� includes four independent parameters
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�� ,qr ,�rr ,���� and five dependent parameters
�� ,Rrr ,R�� ,mrrr ,mr���, all vary only with respect to the ra-
dial direction.

In the linear case explicit expressions are available for
�� ,Rrr ,R��� �see Eq. �41�� thus, these dependent parameters
can be removed from the parameters list U as long as they
can be expressed by other dependent parameters.

After straightforward manipulations the linearized tem-
perature problem can be written in matrix form,

I
�U

�r
= PU , �55�

with the boundary conditions

U = BU + Binh, �56�

where I is the unit matrix and U is the parameter vector

U = �qr,���,mr��,mrrr,�rr,��T. �57�

The vector Binh contains the boundary properties, including
the temperature and accommodation coefficients of the walls

Binh = 	2��w,0,
1

5
��w,−

2

5
��w,0
T

. �58�

For brevity in presentation of the boundary conditions, modi-
fied accommodation factors � are introduced as

� =
�

2 − �
 2


. �59�

The matrices P and B are

P =�
−

1

r
0 0 0 0 0

0
4 Kn

3r
−

3

2 Kn
−

1

3 Kn
−

4 Kn

3r
0

−
4

5r
−

1

Kn
−

3

r
0 0 0

4

5r
0

2

r
−

1

r
−

1

Kn
0

0 −
2

3r
0 −

5

6 Kn

2

3r
0

−
4

15 Kn

2

3r
0

1

3 Kn
−

2

3r
0

�
�60�

and

B =�
−

6 Kn �

7r
0 0 0 −

�

2
− 2�

0 1 0 0 0 0

12 Kn �

35r
− � 0 0

�

5
−

�

5

−
12 Kn �

35r
0 0 0 −

7�

5

2�

5

0 0 0 0 1 0

0 0 0 0 0 1

� . �61�

By using the basic central finite difference method, Eq. �55�
with the boundary condition �56� is solved numerically for
U. In the linear case, the parameters in U change locally, and
since both P and B matrices are independent of U, no itera-
tion is required in the numerical method, and the accuracy of
the numerical results only depends on the grid resolution.

The general solution for Eq. �45� is

�NSF = C5 ln r + C6 �62�

that gives the radial temperature distribution for the linear
NSF system. The integrating constants C5 and C6 must be
determined from the boundary condition �46�.

V. RESULTS AND DISCUSSION

In this section, first we present a parametric study on ra-
dial distribution of macroscopic properties in the cylindrical
Couette flow of a moderately rarefied gas. Furthermore, we
compare the accuracy of linear Navier-Stokes-Fourier and
regularized 13-moment systems with available DSMC data
in the literature.

A. Results for the velocity problem

The linear velocity problem can be characterized by
Knudsen number Kn, surface accommodation factor �, and
the wall velocities v�

w or wall Mach numbers. We shall in-
vestigate the radial distributions for ��r� ,q� ,v�� given by
Eqs. �52�–�54�. The radius of the inner cylinder ri=1 is taken
as the reference length scale, i.e., the Knudsen number is
defined based on the radius of the inner cylinder, and a
fixed radius ratio is considered ro /ri=2. The other
parameters assume the values �= �0.02,0.2,0.5,1� and
Kn= �0.01,0.05,0.1,0.2�. Rotational state of the cylinders
are categorized in three modes given in Table I, such that
v�

w,i+v�
w,o=0.5.

Figure 2 presents the radial distribution of shear stress,
circumferential heat flux, and velocity in the annulus. The

TABLE I. Rotational modes for cylinders.

v�
w,i v�

w,o

Mode 1 0.5 0

Mode 2 0 0.5

Mode 3 0.25 0.25
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plots are obtained for fully diffusive walls �=1, while the
effects of different Knudsen numbers and rotational modes
are illustrated.

Distribution of shear stress �r� for both Navier-Stokes
and R13 systems is given by Eq. �52�, albeit with different
values for the constant C1, which is obtained from different
boundary conditions. As shown in the top row of Fig. 2, for
larger Knudsen numbers we observe larger shear stress on
the walls. As expected plot �a� shows that for rotation mode
1 stress is maximum on the inner rotary cylinder and rapidly
decays toward the outer stationary surface. However, this

pattern is not observed for rotational mode 2 in plot �b�,
where the stress is minimum on the rotary outer cylinder and
increases toward the inner cylinder. This occurs because of
curvature effects �converging geometry�, i.e., the volume of
flow decreases toward the inner cylinder. Rotation of the
inner cylinder in the same direction as of the outer one can
change this pattern again, see plot �c�.

On the middle row of Fig. 2 the circumferential heat flux
given by Eq. �53� is plotted. This non-Fourier heat flow
which is not driven by temperature gradient is a pure rarefac-
tion effect and is not accessible for classical hydrodynamics,

FIG. 2. �Color online� Solutions of the linear velocity problem: dashed blue line is NSF with first-order boundary condition; long-dashed
red line is NSF with second-order boundary condition; continuous black line is R13 with third-order boundary conditions. Radial distribution
of shear stress �top plots�, circumferential heat flux �middle plots�, and velocity �bottom plots� in the annulus between two fully diffusive
cylinders �=1 are shown. Plots in left, middle, and right columns correspond to rotational modes 1, 2, and 3, respectively. For each rotational
mode, effects of Knudsen number variation are depicted. NSF results with the proposed second-order slip condition show satisfactory
agreement with the R13 predictions. For the small Knudsen numbers NSF results are not shown, since they are very close to the R13
predictions.
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q�
NSF=0. Equation �54� indicates that q� gives the Knudsen

boundary layer for the velocity problem. It can be seen in
Fig. 2 that the magnitude of the circumferential heat flow and
thickness of the Knudsen layer increases with Kn.

As a consequence of curvature effects, for all the rota-
tional modes the circumferential heat flow is stronger on the
inner cylinder, and already for Kn=0.2 this Knudsen layer
extends over the whole flow field. For rotational modes 1 and
2 the heat flow direction on the rotary wall is opposite to the
wall velocity and, hence, mass flow direction. This is consis-
tent with Couette flow simulations in planar geometry �42�.
Nevertheless, in the cylindrical geometry direction of q� is
inverted on the stationary walls, see plots �d� and �e� in Fig.
2.

The bottom plots in Fig. 2 are devoted to the velocity
distribution. The obtained results confirm that velocity slip
increases in dilute gases. Moreover, for all rotation modes,
the inner cylinder has larger slip values owing to more sur-
face curvature.

The Navier-Stokes results obtained from the first- and
second-order slip conditions are shown for Kn=0.2. Indeed,
the proposed higher-order boundary condition in Eq. �36�
effectively shift the Navier-Stokes solutions toward the R13
prediction.

Velocity differences between R13 and NSF with second-
order slip condition are more apparent near the walls. This
can be explained by the explicit solution for velocity in Eq.
�54� which is the superposition of Knudsen layer �q��, bulk
velocity, and slip. The R13 equations benefit the Knudsen
layer to provide more curvature near the walls, see plots �g�
and �i� in Fig. 2.

The effects of different accommodation factors and rota-
tional modes for Kn=0.1 are investigated in Fig. 3, where
radial distribution for shear stress, circumferential heat flux,
and velocity are given. Comparison between Figs. 2 and 3
shows that for the same rotational mode, variations in � and
Kn have similar effects on �r� and q� distribution. Smooth
walls with small � values impose less stress and weak Knud-
sen layers.

In plot �g� velocity inversion is observed, i.e., flow veloc-
ity increases close to the stationary wall �18,21,26,27�. The
velocity inversion takes place only for rotational mode 1 and
for small accommodation coefficients. It is not a rarefaction
effect as it can be predicted by NSF system. This phenom-
enon is the effect of curvature on the slip length, hence it
cannot be observed in the planar Couette flows. In other
words, cooperation between the wall curvature and wall
smoothness on the inner cylinder extensively increases the
slip such that velocity inversion occurs.

In Figs. 4 and 5 we have compared our velocity results
with DSMC data from Refs. �18,21�. The DSMC method
�25� is known as the most successful method for the solution
of the Boltzmann equation. In the considered DSMC simu-
lations, molecules are treated as hard-sphere molecules,
which is consistent with the underlying kinetic of the pre-
sented R13 equations �Eq. �3�–�18��. It is important to em-
phasize that in Refs. �18,21� the Knudsen number is defined
based on the gap size L and inner radius ri, respectively.

Consequently, our solutions are characterized by two differ-
ent Knudsen numbers.

The DSMC data in Ref. �18� are for argon at
p=101 325 Pa, confined between two isothermal walls at
T=298.15 K, where the mean-free path for hard-sphere mol-
ecules is �HS=6.25�10−8 m and speed of sound is 321.626
m/s. The outer cylinder is stationary while the inner one
rotates at �i=5.17�108 rad /s. The gap size is L=ro−ri with
ri=3�HS and ro=5�HS. These conditions give Kn=0.447
�based on our definition for Knudsen number�, while differ-
ent accommodation factors are employed.

Plots �a� and �b� in Fig. 4 present Navier-Stokes results
for velocity with first- and second-order slip conditions, re-
spectively. It is shown that the new second-order slip condi-
tion improves the Navier-Stokes predictions and makes them
comparable with DSMC and with the R13 results, which are
depicted in plot �c�. This improvement is more apparent near
the outer stationary wall. For fully diffusive walls, the veloc-
ity profiles are compared in plot �d�.

We emphasize that in the DSMC simulations of Ref. �18�
the size of the gap between the cylinders is 2�HS, which is
very small. The thickness of Knudsen boundary layers is
usually in the order of two mean free paths. Therefore, in
�18� the Knudsen layers affect the whole flow field, specifi-
cally for the diffusive walls. So we do not expect excellent
agreement with the DSMC results of �18� since the Knudsen
number is too large for our method. This motivated another
comparison with DSMC data for smaller Knudsen number
from Ref. �21�.

In Ref. �21�, unlike �18�, the radius of the inner cylinder ri

is assigned as the characteristic length and ro=2ri. The di-
mensionless surface velocity of the inner cylinder is
ṽ�

w,i=2 /2, and the outer cylinder is at rest. The Knudsen
number k used in �21� is related to our definition by
k=82 Kn / �5�.

Figure 5 presents the velocity comparison for
�= �0.01,0.2,1.0� when k=0.1 or Kn=0.08. Since the Knud-
sen number is relatively small, the Navier-Stokes system
shows good agreement. The profiles near the rotating wall
are magnified to show the Knudsen layers. The R13 results
exhibit more curvature than NSF due to the tangential heat
flow effects.

B. Results for the temperature problem

As shown in Sec. III C, temperature and velocity prob-
lems are independent in the linearized systems. This means
coupling between velocity and temperature fields �particu-
larly, viscous heating� is ignored in our analysis. Therefore,
the temperature problem is reduced to stationary radial heat
conduction between the cylinders. DSMC simulations with
isothermal cylinders �18,21� exhibit small temperature devia-
tion due to viscous dissipation. Tibbs et al. �18� reported 1%
and 3% density and temperature variations, respectively,
while in Ref. �21� effects of viscous heating on density and
temperature is about 5% for k=0.1.
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As postulated by Fourier’s law, for isothermal walls our
numerical results for the linearized equations confirm a ho-
mogeneous radial distribution for temperature where,

��r� = �w, qr�r� = ����r� = �rr�r� = 0. �63�

The above results, with Eq. �47�, give a constant radial dis-
tribution for density ��r�=�0.

We consider a case where the cylinders are at different
temperatures. Then, the linear temperature problem can be
characterized by Knudsen number Kn, surface accommoda-
tion factor �, and wall temperatures �w. The parameters are

chosen similar to the velocity problem, but v�
w,i=v�

w,o=0, and
we shall define two temperature modes, with �w,i=2�w,o=2
and �w,o=2�w,i=2 for mode 1 and 2, respectively.

Profiles of diagonal elements of stress tensor, radial heat
flux, and temperature are shown in Fig. 6. Plots �a�–�h� are
obtained for fully diffusive walls �=1, and the effects of Kn
variations are shown. Plots �i�–�p� are obtained for Kn=0.1,
while the effects of � variations are examined.

In the temperature problem switching between the tem-
perature modes only inverts the process, compare the signs
of �rr, ���, and qr between the temperature modes.

FIG. 3. �Color online� Solutions of the linear velocity problem: dashed blue line is NSF with first-order boundary condition; long-dashed
red line is NSF with second-order boundary condition; continuous black line is R13 with third-order boundary conditions. Radial distribution
of shear stress �top plots�, circumferential heat flux �middle plots�, and velocity �bottom plots� in the annulus for Kn=0.1 are shown. Plots
in left, middle, and right columns correspond to rotational modes 1, 2, and 3, respectively. For each rotational mode, effects of surface
accommodation factors are depicted. NSF results with the proposed second-order slip condition show satisfactory agreement with the R13
predictions. For the small Knudsen numbers NSF results are not shown, since they are very close to the R13 predictions.
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The first and second row of plots show that diagonal
stress components, which are zero in NSF system, grow with
Kn and �. These non-Newtonian stress components can be

�interpreted as Knudsen layers for the temperature problem.
The behavior of radial heat flux qr is similar to shear stress in
the velocity problem. So one might conclude that in the lin-
ear limit the differences between the NSF and R13 results for
qr only refers to the difference between the boundary condi-
tions. This cannot be proved through the numerical solutions
as we do not have explicit solution for qr. Heat flow between
two cylinders is stronger at rarefied conditions due to the
larger mean free path. Analogously, diffusive walls increase
the heat flow since they provide better thermalization for the
gas molecules.

The bottom plots in Fig. 6 are devoted to the radial tem-
perature distribution. It can be seen that there are larger tem-
perature jumps on the inner cylinder, owing to its higher
curvature. Plots �g� and �h� show that temperature jump in-
creases with Kn, since the number of gas-surface collisions
decreases for large Knudsen numbers. On the other hand,
temperature jump and � are in inverse relation. For very
small values of �, temperature jump increases on both cyl-
inders, such that a homogeneous temperature fills the annu-
lus, see plots �o� and �p�.

As shown in the plots, the proposed second-order jump
condition provides better matching between NSF and R13
results. Indeed, the differences between the improved NSF

FIG. 4. �Color online� Radial
velocity distribution for different
accommodation factors when
Kn=0.447. Knudsen number is
defined based on the gap size,
L=ro−ri. Navier-Stokes and R13
results are compared to DSMC
data �diamond symbols� from Ref.
�18�.

FIG. 5. �Color online� Radial velocity distribution for Kn
=0.08 with different accommodation factors. Knudsen number is
defined based on the radius of the inner cylinder. Navier-Stokes and
R13 results are compared to DSMC data �symbols� from Ref. �21�.
Profiles near the rotary wall �shaded areas� are magnified to show
the effects of Knudsen layers.
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and R13 predictions in temperature refers to the effects on
Knudsen layers, compare Eq. �40� with Eq. �45�.

Nonisothermal Couette flow between two rotating cylin-
ders is investigated by Sharipov and Kremer �19� using the
discrete velocity method for the BGK equation. In their
simulations coupling between velocity and temperature fields

is taken into account, which includes interaction of bulk flow
and velocity and temperature Knudsen layers. Comparison of
our data with those in �19� requires recasting the R13 equa-
tions for the BGK model followed by numerical solution for
the fully nonlinear equations, which is currently under inves-
tigation and will be presented elsewhere.

FIG. 6. �Color online� Solutions for the linear temperature problem: dashed blue line is NSF with first-order boundary condition;
long-dashed red line is NSF with second-order boundary condition; continues black line is R13 with third-order boundary conditions. Radial
distribution of non-Newtonian shear stresses �first and second rows�, radial heat flux �third row�, and temperature �bottom plots� in the
annulus are shown. For each temperature mode, effects of different surface accommodation factors and Knudsen numbers are depicted.
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VI. CONCLUSIONS

Cylindrical Couette flow and stationary heat transfer be-
tween coaxial cylinders were investigated with classical and
extended hydrodynamics, Navier-Stokes-Fourier, and regu-
larized 13-moment equations. The linear regime was consid-
ered, where velocity slip, temperature jump, and Knudsen
layers are dominant rarefaction effects. In the velocity prob-
lem explicit expressions for Knudsen layers were obtained.
Similar to Couette flows in slab geometry, these kinetic lay-
ers, which construct the circumferential heat flow, improve
the curvature of R13 solutions near the boundaries as com-
pared to solutions of the Boltzmann equation. Furthermore,
we presented numerical solutions of Knudsen layers in the
temperature problem, i.e., diagonal components of the stress
tensor.

In the linear limit, the major difference between the planar
and cylindrical cases is the coupling between �rr and ���

within the geometry terms, which demands numerical tools
for the temperature problem.

Moreover, a new set of second-order velocity slip and
temperature jump conditions for Navier-Stokes-Fourier sys-
tem was introduced. It was shown that the proposed bound-
ary conditions effectively improve the NSF predictions.
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APPENDIX A: SECOND-ORDER SLIP AND JUMP
CONDITIONS IN CYLINDRICAL GEOMETRY

In order to derive second-order boundary conditions for
Navier-Stokes-Fourier system consider R13 boundary condi-
tions for �r� and qr, i.e., Eqs. �20� and �22�, to find velocity
slip and temperature jump as

V� = −
2 − �

�
�

2

�r�

P
nr −

1

5

q�

P
−

1

2

mrr�

P
�A1�

and

T = −
2 − �

�
�

2

qr

2P
nr +

1

4
V2 −

1

4

��rr

P
−

1

30

�

P
−

5

56

Rrr

P
.

�A2�

The underlined terms represent the well-known first-order
contributions to slip and jump, where �r� and qr need to be
replaced from Eq. �19� and PNSF= p. The rest are higher-
order terms which are zero in NSF, however, they can be
expressed in terms of Navier-Stokes and Fourier laws. To do
so, we use a scaling approach based on the Chapman-Enskog
expansion as in Ref. �41�.

The equilibrium quantities density, temperature, and ve-
locity are not expanded since they are of zeroth order. Nor-
mal heat flux and tangential stress are first-order quantities

qr = Kn q*r, �r� = Kn �*r�, �A3�

while second-order quantities are

q� = Kn2 q*�, �rr = Kn2 �*rr, ��� = Kn2 �*��,

� = Kn �
*, Rrr = Kn2 R*rr, R�� = Kn2 R*��,

mrr� = Kn2 m*
rr�, m��� = Kn2 m*

���. �A4�

The remaining quantities which promote the R13 boundary
conditions to be of third order are

Rr� = Kn3 R*r�,

mrrr = Kn3 m*
rrr, mr�� = Kn3 m*

r��. �A5�

The moments in Eqs. �A3�–�A5� are scaled as M =Kn� M*,

where the rescaled moment M* is of order unity and � is the
order of the moment M.

Replacement of the scaled moments into the extended bal-
ance Eqs. �6�–�18� allows to reduce them up to second order.
Accordingly, normal heat flux and shear stress balance re-
duce to the Fourier and Navier-Stokes laws

q*r = −
15

4
	

��

�r
, �*r� = − 		 �v�

�r
−

v�

r

 , �A6�

and the required second-order moments read
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m*
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*
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�A12�

Since the moments in Eq. �A5� yield third- and higher-order
terms, they will be discarded and their equations are not
shown here.

Substitution of Eqs. �A7�–�A12� into Eqs. �A1� and �A2�
gives the second order slip and jump conditions, as presented
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in the text, i.e., Eqs. �27� and �28�. The last step includes
replacement of Eq. �A6� into the obtained boundary condi-
tions.

APPENDIX B: DIMENSIONLESS PARAMETERS

The reference equilibrium state is defined by
��0 ,�0 ,vi

0=0�. The non-dimensional radial coordinate and
time are defined as

r̃ =
r

�
and t̃ =

�0

�
t , �B1�

where the arbitrary macroscopic length scale and thermal
speed at reference state are denoted by � and �0, respec-
tively. The hat signs indicate dimensionless quantities, which
for better readability are removed in the text. Nondimen-
sional density and temperature are defined as deviations from
the reference state,

�̃ =
� − �0

�0
and �̃ =

� − �0

�0
. �B2�

Accordingly, equation of state for the ideal gases reads

p = �� = �0�0�1 + �̃��1 + �̃� = p0�1 + �̃ + �̃� , �B3�

where �̃�̃=0 in linearization.
The other dimensionless variables are

ṽi =
vi

�0

, �̃ij =
�ij

�0�0
, q̃i =

qi

�0
�0

3
,

�̃ =
�

�0�0
2 , R̃ij =

Rij

�0�0
2 , m̃ijk =

mijk

�0
�0

3
. �B4�

Moreover, the dimensionless viscosity 	̃ is defined as

	̃ =
	

	0
, where 	0 = 	��0� . �B5�

In the governing equations, wherever we have viscosity, the
dimensionless equations will include the reference Knudsen
number Kn,

Kn =
�0

�
=

	0
�0

p0�
. �B6�
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